神书网

神书网>数学心形函数表达式 > 第一百七十四章 拉普拉斯方程函数流体力学(第1页)

第一百七十四章 拉普拉斯方程函数流体力学(第1页)

拉普拉斯想去见大数学家达朗贝尔,达朗贝尔因为他是民科,拒绝见。

随后拉普拉斯把自己的论文寄给了达朗贝尔。

达朗贝尔看后,看到这个论文研究关于液面曲率与液体表面压强之间的关系的公式,觉得太非凡了,想亲自见见他。

达朗贝尔见了拉普拉斯对拉普拉斯说:“我看到你研究曲面了,这个很有挑战性。”

拉普拉斯说:“我们要找到曲面的真正特征,从这个特征上去准确研究曲面。”

达朗贝尔说:“你找到的是什么特征?”

拉普拉斯说:“通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线。”

达朗贝尔说:“那需要知道什么样的曲率呢?”

拉普拉斯说:“在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。”

达朗贝尔说:“知道R1和R2有什么用?”

拉普拉斯说:“若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P=P1-P2,称附加压强。”

拉普拉斯-贝尔特拉米算子。

拉普拉斯算子被定义为欧式空间的二阶微分算子,定义为梯度和散度。

也可以推广为定义在黎曼流形上的椭圆型算子。

椭圆型偏微分方程是偏微分方程的一个类型,简称椭圆型方程。

描述物理中的平衡稳定状态,如定常状态的电磁场、引力场和反应扩散现象等。

也可以推广都非欧几何空间,这时有可能是椭圆型算子、双曲型算子,或超双曲型算子。

闵可夫斯基空间中,拉普拉斯算子变成达朗贝尔算子。

达朗贝尔算子通常用了表达克莱因-高登方程以及思维波动方程。

喜欢数学心请大家收藏:()数学心

请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

相邻推荐:开局被渣,反手投资女帝无敌  沉睡千年醒来,749局找上门  造孽啊,曹贼竟是我自己  在明末奋斗  都市重生:我在七日世界刷神宠  高冷学神之攻略手册  一本杂录  大清话事人  好运撞末日  神奇宝贝:开局十连抽,获得梦幻  尘封的仙路  跨越阶层的恋爱  包青天断案传奇故事汇  柯南!快看,你爸爸过来了!  春过辽河滩  开局成为峰主,打造万古不朽仙门  邪灵战神  仙骨  剑神韩友平第一部  偏偏宠上你  

已完结热门小说推荐

最新标签